One in 59 children are diagnosed with an Autism Spectrum Disorder (ASD), a wide array of conditions affecting a child's social, emotional, and behavioral development. With prevalence growing at an unprecedented rate -- it has nearly tripled in the last 15 years -- scientists race to understand ASD. While genetic and environmental influences have been implicated as potential causes of ASD, little is known about its neurobiology.
Now, researchers at Children's Hospital Los Angeles have brought us one step closer.
In a study published January 30th in the journal Biological Psychiatry, CHLA's Bradley Peterson, MD, uncovers a direct link between altered brain activity and social deficits in ASD. Peterson's group studied 44 individuals with ASD and compared them with 66 typically-developing participants. Groups were matched for age, sex, and IQ.
Peterson's team used advanced imaging techniques to acquire two types of information. First, the group used a method called arterial spin labeling, which measures blood flow through the vessels of the brain. Because active parts of the brain need the most oxygen and nutrients, more blood flow to an area signals increased brain activity. Second, the team measured levels of NAA, an amino acid byproduct commonly used as a marker of healthy neurons.
"This is a multimodal imaging data set," explains Peterson, Director of the Institute for the Developing Mind at CHLA and Professor of Pediatrics at the Keck School of Medicine of USC. "Each modality gives us a different window into the brain. We are able to look through both windows at once to tell us much more about what's going on in the brains of these individuals."
Scans revealed a striking pattern in the part of the brain called the white matter. read more
No comments:
Post a Comment